Origem da vida (Wikepédia)
Os estudos científicos da origem da vida, ocasionalmente também denominados evolução química, constituem um ramo pluridisciplinar da ciência, que envolve, além da Química e da Biologia, conhecimentos de Física, Astronomia e Geologia. Seu objeto de interesse são os processos que teriam permitido aos elementos químicos que compõem os organismos atingirem o grau de organização estrutural e funcional que caracteriza a matéria viva. O fato de que estes processos requerem condições determinadas, que só podem ocorrer em locais específicos do universo, conecta o estudo da origem da vida à Astrobiologia.
Os modelos propostos para a origem da vida são tentativas de recriar a história desta evolução e é importante destacar que não existe, na maioria das etapas deste processo, nenhum consenso entre os cientistas. É uma situação inteiramente distinta da evolução biológica onde o modelo evolucionista Darwiniano encontra-se bem estabelecido há mais de um século. Para melhor situar o problema é indispensável em primeiro lugar examinar os níveis de organização inerentes à matéria viva e então discutir como os modelos propostos para a origem da vida (ou biopoese) tentam resolvê-los.
Índice |
Níveis de organização dos organismos vivos
Materiais disponíveis (Elementos biogênicos)
O primeiro requisito fundamental refere-se à disponibilidade dos elementos químicos essenciais à vida. De fato, o carbono, o hidrogênio, o oxigênio, o nitrogênio, o fósforo e o enxofre, denominados coletivamente "elementos biogênicos" (geradores de vida), estão entre os mais abundantes do universo. Pertencem igualmente ao grupo dos elementos mais leves da tabela periódica, e são ou formam facilmente compostos voláteis. Estão, por isso, sempre presentes em grande quantidade em planetas ou satélites grandes e frios o suficiente para possuírem atmosferas, e tendem a se acumularem em suas camadas superficiais. Por outro lado, a natureza das reações bioquímicas conhecidas exige que as temperaturas reinantes permitam a existência de água em estado líquido. Estes limites são fundamentais aos conceitos de habitabilidade planetária e de zona habitável.Distribuição dos elementos biogênicos no universo
Combinação (Compostos orgânicos)
Nos organismos vivos, os elementos biogênicos constituem moléculas de grande variedade estrutural onde se distinguem três classes principais; os lipídeos formados pela combinação de compostos muito reduzidos e insolúveis em água; os glicídeos e os protídeos, ambos de grau de redução intermediário, e tipicamente solúveis em água na sua forma monomérica (ou seja, quando as moléculas que os constituem, os açúcares e os aminoácidos, estão desagrupadas). Já em sua forma agrupada, os polímeros, podem apresentar as características físico-químicas mais variadas.Agregação dos materiais orgânicos
As formas poliméricas dos glicídeos incluem tanto formações lineares quanto expansões laterais. Estes polímeros têm geralmente função estrutural (celulose) ou de acúmulo energético (amido, glicogênio). Já os polímeros derivados dos aminoácidos, os polipeptídeos, além de se prestarem a estas mesmas funções, têm papel essencial no funcionamento do metabolismo. Os polipeptídeos fabricados pelos organismos vivos são denominados proteínas. As proteínas envolvidas em funções metabólicas são denominadas enzimas. São basicamente constituídas de cadeias lineares de aminoácidos que organizam-se espacialmente formando hélices ou novelos determinados pela constituição individual dos aminoácidos componentes da cadeia. A conformação espacial de cada proteína é responsável por suas características físico-químicas.Orientação espacial (Quiralidade)
Para que a conformação espacial das proteínas seja constante é indispensável que os aminoácidos que a constituem tenham uma orientação espacial determinada. Todos os aminoácidos, com exceção da glicina, podem existir em duas formas geometricamente opostas denominadas enantiômeros. Esta propriedade constitui a chamada 'quiralidade' (do grego chiros -'mão'), pois as duas formas diferem uma da outra em termos de orientação espacial da mesma forma que a mão esquerda difere da mão direita. Os aminoácidos e açúcares preparados por métodos artificiais sem o uso de agentes quirais são sempre misturas de partes iguais dos dois enantiômeros. Nos seres vivos, ao contrário, o maquinário metabólico é totalmente específico, sintetizando e utilizando aminoácidos e açúcares pertencentes a uma mesma forma estrutural.Organização funcional
O surgimento da organização funcional dos organismos primitivos, ou seja, a forma como as moléculas se dispõem para constituir as primeiras entidades capazes de interagir com o meio ambiente é outro passo fundamental. O fato de que nos organismos atuais todas as funcionalidades presumem a existência de compartimentos individualizados, as células, demonstra que a conquista da celularidade foi certamente um fato decisivo na história primitiva dos sistemas vivos.Transmissão da informação
O outro requisito essencial da evolução primitiva da vida foi o desenvolvimento da possibilidade de transmitir a informação adquirida na interação com o meio ambiente, que requer a possibilidade de reprodução e também a possibilidade de criação e preservação da variabilidade entre os organismos. Estas características dependem das propriedades singulares dos ácidos nucléicos (RNA e DNA), moléculas que são capazes de conter informação e de se replicar, estando esta replicação sujeita a pequenos erros. O aumento da variabilidade traduz-se num grande número de modos de interação com o meio ambiente, dos quais os mais eficazes são preservados, por meio da seleção natural.Evolução das ideias
Hipótese heterotrófica (ou clássica)
O marco inicial do questionamento científico moderno a respeito da origem da vida pode ser posicionado nos experimentos de Louis Pasteur, demonstrando que a formação de organismos vivos a partir da matéria inanimada (geração espontânea), não poderia ser, ao contrário do que muitos supunham então, um fenômeno trivial.O papel das argilas
Retomando as idéias de Bernal, Alexander Graham Cairns-Smith[5], desenvolveu a hipótese de que os minerais argilosos teriam constituído não somente o suporte, mas também o próprio sistema genético da vida primitiva, posteriormente suplantado por compostos orgânicos (ácidos nucléicos). Em sua defesa levantou a capacidade de replicação de superfícies cristalinas, preservando defeitos e irregularidades, e também a complexidade química dos polímeros envolvidos nos processos reprodutivos atuais.Modelos Hidrotermais.

Modelos abstratos
Alguns enfoques acerca da origem da vida utilizam uma abordagem mais abstrata ou genérica. Ao invés de partir da natureza dos constituintes químicos dos sistemas vivos, guiam-se sobretudo por suas propriedades funcionais. Um dos modelos mais conhecidos nesta concepção é o dos hiperciclos, propostos por Manfred Eigen[7][8] como protótipos dos ciclos metabólicos primitivos. Outras propostas que fogem às especificidades da postulação de uma bioquímica primitiva são a proposta do "Garbage Bag World" ("Mundo Saco de Lixo"), do físico Freeman Dyson[9], endossada por Robert Shapiro [10] e o modelo de complexidade de Stuart Kauffman[11]. A primeira propõe que vesículas contendo coleções de compostos químicos formadas ao acaso competissem em viabilidade até que uma delas apresentasse todas as características de um sistema vivo primitivo. Sugere ainda que o metabolismo e a reprodução tivessem surgido independentemente e que os organismos atuais descenderiam de uma célula onde tivesse ocorrido a simbiose dos dois processos. Kauffmann defende, com base em modelos puramente matemáticos, que coleções suficientemente complexas de compostos químicos podem vir a "cristalizar" ciclos metabólicos.Modelos metabólicos - O mundo dos tioésteres
A idéia de que o funcionamento dos processos metabólicos atuais pode fornecer pistas importantes para a compreensão da bioquímica dos primeiros seres vivos é a base de uma visão "metabólica" da origem da vida, onde se destacam os estudos de Harold Morowitz e Christian de Duve[12][13]. Coube a De Duve a formulação de um modelo mais preciso, postulando a congruência entre o metabolismo primitivo e a bioquímica dos seres vivos atuais, onde a função central da Acetil-S-Coenzima A no metabolismo energético teria sido precedida por compostos derivados da esterificação de ácidos carboxílicos (RCOOH) com tióis (RSH), os tioésteres (RCOSR).O "Mundo do RNA"
A proposição do "mundo do RNA" feita por Walter Gilbert[14] em 1986, é baseada na descoberta do fato que estas moléculas são capazes tanto de armazenar informação (como o DNA na maior parte dos organismos vivos atuais), quanto de promover reações metabólicas (como atualmente as enzimas, de natureza protéica). Além das evidências experimentais, que apontam para um rico repertório de atividades catalíticas e para a capacidade de replicação e evolução deste material, há, nos organismos vivos, inúmeros indícios deste "mundo do RNA". Citam-se, entre outros, a natureza química dos co-fatores enzimáticos, estruturalmente relacionados com os monômeros do RNA e os processos de reprodução de vários tipos de vírus, tidos como remanescentes de formas primitivas de vida. A etapa mais recente da origem da vida, tratada pela hipótese do mundo do RNA, é considerada pela maioria dos cientistas a mais bem conhecida, e talvez a única em que se tenha claramente ultrapassado o domínio da especulação.Visões alternativas
[Panspermia
Ecopoese
O modelo da Ecopoese ([1]) postula que os ciclos geoquímicos dos elementos biogênicos, dirigidos por uma atmosfera primordial rica em oxigênio, foram a base de um metabolismo planetário que precedeu e condicionou a evolução gradual da vida organismal. Esta visão contraria a idéia tradicional de que a ação dos organismos é a grande responsável pelas características principais do ambiente terrestre. É também consistente com as crescentes evidências de uma atmosfera oxidante[15] desde o início da formação de nosso planeta e com a antigüidade do metabolismo aeróbico, comparado à fotossíntese oxigênica[16].Referências
- ↑ Oparin, A.I. (1938). Origin of life. 1953 edition. Dover Publications Inc, Nova York.
- ↑ Haldane, J.B.S. (1928). The origin of life. Rationalist Annual, Londres.
- ↑ Bernal, J.D., (1951). "The Physical Basis of Life". Routledge and Kegan Paul, Londres.
- ↑ Miller, S.L., (1953). Production of amino acids under possible primitive Earth conditions. Science, 117, 528-529.
- ↑ Cairns Smith, A.G. (1986). "Sete pistas para a origem da vida. Uma história científica contada à maneira de um romance policial", Editorial Presença, Lisboa, 1986 (tradução de J. J. Sousa Ramos e A. Telma dos Reis e Sousa do original inglês, "Seven clues to the origin of life", Cambridge University Press, 1985).
- ↑ Wächtershäuser, G., (1994). Life in a ligand sphere. Proc. Natl. Acad. Sci. U.S.A., 91, 4283-4287.
- ↑ Eigen, M., Schuster, P. (1979). The Hypercycle: A principle of natural self-organization, Springer Verlag.
- ↑ Eigen, M. (1971). Molekulare Selbstorganisation und Evolution. Naturwissenschaften 58 (10), 465-523.
- ↑ Dyson, F. (1986). "Origins of life", Cambridge University Press.
- ↑ Shapiro, R. (2007). Uma origem mais simples da vida. Scientific American (Brasil) 6 (62), 36-43.
- ↑ Kauffman, S. (1995). At Home in the Universe: the search for laws of complexity. Viking.
- ↑ De Duve, C. (1990). "Construire une cellule : essai sur la nature et l'origine de la vie", InterEditions, Bruxelas.
- ↑ De Duve, C. (1997). "Poeira Vital", Editora Campus, Rio de Janeiro.
- ↑ Gilbert, W. (1986). The RNA world. Nature, 319, 618.
- ↑ Yamaguchi, K.E. (2005) Evolution of the atmospheric oxygen in the early Precambrian: An updated review of geological 'evidence'. In Frontier Research on Earth Evolution (ed. Y. Fukao), 2, 04-23. ( http://www.jamstec.go.jp/ifree/j/about/result/report_for_2003-2004/honbun/04_23.pdf )
- ↑ Castresana, J., Saraste, M. (1995). Evolution of energetic metabolism: the respiration-early hypothesis. Trends Biochem. Sci. 20:443–48. ( http://www.ncbi.nlm.nih.gov/pubmed/8578586 )